Robust Distributed Guidance and Control of Multiple Autonomous Surface Vehicles based on Extended State Observers and Finite-set Model Predictive Control

Haoliang Wang
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: haoliang.wang12@dlmu.edu.cn

Jizhou Jiang
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: jizhoujiang@126.com

Wentao Wu
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: wuwentaodlmu@gmail.com

Lu Liu
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: wendaqerji@163.com

Dan Wang
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: dwangdl@gmail.com

Zhouhua Peng
School of Marine Electrical Engineering
Dalian Maritime University
Dalian 116026, P. R. China
Email: zhpeng@dlmu.edu.cn

Abstract—This paper is concerned with the guidance and control design for a swarm of multiple under-actuated autonomous surface vehicles subject to unmeasured velocities of neighbors, system uncertainties and ocean disturbances. A robust distributed guidance and predictive control architecture is presented to achieve a desired formation along a parameterized path. Specifically, a robust distributed constant bearing guidance law is designed based on extended state observers. Then, optimized surge speed and heading controllers are designed based on finite-set model predictive control for selecting optimal actions within finite control sets and extended state observers for recovering the unmeasured yaw rate and unknown model. Simulation results demonstrate the effectiveness of the proposed robust distributed cooperative guidance and control methods for path-guided formation maneuvering of multiple under-actuated autonomous surface vehicles.

Index Terms—Autonomous surface vehicles, distributed cooperative guidance, extended state observer, finite-set model predictive control

I. INTRODUCTION

In recent years, formation control of multiple autonomous surface vehicles (ASVs) has drawn compelling interests and a large number of formation control methods are available [1]–[14], ranging from leader-follower approach [15], [16], behavior approach, potential functions [3], and graph-based mechanism [1]–[9]. In particular, graph-based distributed formation control methods has been well studied. Distributed formation control of fully-actuated ASVs based on local information of neighboring vehicles has been presented in [1]–[3], [7]. In [8], a path-guided time-varying formation controller with the capability of collision avoidance and connectivity maintenance is proposed for each ASV. In [9], a path-guided distributed containment controller is proposed for each ASV guided by multiple virtual leaders. The limitations are stated as follows. Firstly, the velocities of neighbours and formation derivatives are required at the kinematic level. Secondly, the kinematic control law may not lead to optimal performance in the presence of input constraints.

Motivated by the above observations, this paper aims to address the cooperative guidance and control of multiple under-actuated ASVs subject to unmeasured velocities of neighbors, internal model uncertainties and external disturbances. The group is guided by a parameterized path which is known in advance. A robust distributed guidance and predictive control architecture is presented to achieve a desired formation along the parameterized path. More specifically, a robust distributed constant bearing guidance law is designed based on an extended state observer (ESO). At the control loop, robust predictive surge speed and heading controllers are designed under the assumption that the total disturbance is invariant in the prediction horizon. The optimal actions within finite control sets are selected based on finite-set model predictive control (FS-MPC). The effectiveness of the proposed robust
distributed guidance and predictive control scheme is verified via simulations.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Basic concepts and results in graph theory

A weighted directed graph is denoted by \(G = \{ \mathcal{V}, \mathcal{E}, \mathcal{A} \} \) with a node set \(\mathcal{V} = \{ n_1, n_2, ..., n_N \} \). The set \(\mathcal{E} = \{ (n_i, n_j) \in \mathcal{V} \times \mathcal{V} \} \) is an edge set, \((n_i, n_j) \) denotes that \(i \)-th ASV sends information to \(j \)-th ASV (\(i \neq j \)). An adjacency matrix \(\mathcal{A} = [a_{ij}] \in \mathbb{R}^{N \times N} \) with nonnegative elements \(a_{ij} \) shows communication links between vehicles. If \((n_i, n_j) \in \mathcal{E} \), \(a_{ij} = 1 \); otherwise, \(a_{ij} = 0 \). The Laplacian matrix of \(G \) is defined as \(L = D - \mathcal{A} \) where \(D \) is called a degree matrix of \(G \) with \(D = \text{diag}\{d_1, d_2, ..., d_N\} \in \mathbb{R}^{N \times N} \) with \(d_i = \sum_{j=1}^{N} a_{ij}, i = 1, ..., N \).

Assumption 1. The graph \(G \) contains a spanning tree with the root node being the node \(n_0 \).

B. Problem description

Consider a system consisting of \(N \) ASVs with a three degrees of freedom model as

\[
\begin{align*}
\dot{x}_i &= u_i \cos(\psi_i) - v_i \sin(\psi_i), \\
\dot{y}_i &= u_i \sin(\psi_i) + v_i \cos(\psi_i), \\
\dot{\psi}_i &= r_i,
\end{align*}
\]

and

\[
\begin{align*}
m_{iu} \dot{u}_i &= f_{iu}(u_i, v_i, r_i) + \tau_{iu} + \tau_{iuv}(t), \\
m_{iv} \dot{v}_i &= f_{iv}(u_i, v_i, r_i) + \tau_{iuv}(t),
\end{align*}
\]

where \((x_i, y_i) \) denotes the position of \(i \)-th ASV along \(X_E \) and \(Y_E \) axis, \(\psi_i \) denotes the heading angle in the earth-fixed reference frame \(\{E\} \); \(u_i, v_i \) and \(r_i \) denote the surge speed, sway and angular rate in the body-fixed reference frame \(\{B\} \), respectively; \(m_{iu}, m_{iv} \) and \(m_{ir} \) denote the inertia terms; \(f_{iu}(\cdot), f_{iv}(\cdot) \) and \(f_{ir}(\cdot) \) are nonlinear functions of model uncertainties; \(\tau_{iu} \) and \(\tau_{ir} \) are control input of ASVs; \(\tau_{iuv} \) is the ocean disturbances.

Consider a virtual leader moving along a parameterized path \(p_0(\theta) = [x_0(\theta), y_0(\theta)]^T \in \mathbb{R}^2 \), where \(\theta \in \mathbb{R} \) is a path variable; \(p_0(\theta) \) is the position of virtual leader.

A geometrical illustration of the path-guided formation control is shown in Fig.1. The control objective is to achieve a distributed formation control of multiple ASVs guided by the parameterized path with constrained control inputs.

III. DISTRIBUTED COOPERATIVE GUIDANCE LAW DESIGN

This section presents the guidance law design for tracking a parameterized path with the fixed formation.

A. Guidance law design

At first, a formation position error of \(i \)-th ASV based on the information of neighbors is defined as

\[
z_i = \sum_{j=1}^{N} a_{ij}(p_i - p_j - p_{ijd}) + a_{i0}(p_i - p_{i0} - p_{i0d}),
\]

where \(p_i, p_j \) are the position of \(i \)-th ASV and \(j \)-th ASV; \(p_{ijd} = p_{id} - p_{jd} \) is a relative deviation with \(p_{id}, p_{jd} \in \mathbb{R}^2 \) being the position deviation relative to a reference path.

Taking the time derivative of \(z_i \) along (1), it follows that

\[
\dot{z}_i = d_i \begin{bmatrix} u_i \cos(\psi_i) - v_i \sin(\psi_i) \\ u_i \sin(\psi_i) + v_i \cos(\psi_i) \end{bmatrix} - \sum_{j=1}^{N} a_{ij} R_j(\psi_j) \begin{bmatrix} u_j \\ v_j \end{bmatrix} - a_{i0} R_0(\theta) \dot{\theta} - d_{i0} \dot{p}_{ijd},
\]

where \(d_i = \sum_{j=0}^{N} a_{ij}; R_j(\psi_j) \) is a rotation matrix given as

\[
R_j(\psi_j) = \begin{bmatrix} \cos(\psi_j) & -\sin(\psi_j) \\ \sin(\psi_j) & \cos(\psi_j) \end{bmatrix}.
\]

Defining \(\dot{\theta} = v_s - \omega \) with \(v_s \) is a desired path update velocity; \(\omega \) is a variable will be designed subsequently; (4) can be converted to a compact form as follows

\[
\dot{z}_i = d_i \begin{bmatrix} u_i \cos(\psi_i) \\ u_i \sin(\psi_i) \end{bmatrix} - a_{i0} R_0(\theta) \dot{v}_s - \sigma_i,
\]

where

\[
\sigma_i = -\sum_{j=1}^{N} a_{ij} R_j(\psi_j) \begin{bmatrix} u_j \\ v_j \end{bmatrix} - d_{i0} \dot{p}_{ijd} + d_i \begin{bmatrix} -v_i \sin(\psi_i) \\ v_i \cos(\psi_i) \end{bmatrix}.
\]

An ESO is used to estimate \(\sigma_i \) as follows

\[
\dot{\tilde{z}}_i = d_i \begin{bmatrix} u_i \cos(\psi_i) \\ u_i \sin(\psi_i) \end{bmatrix} - a_{i0} R_0(\theta) \dot{v}_s - \tilde{\sigma}_i,
\]

where

\[
K_1^i \in \mathbb{R}^2 \text{ and } K_2^i \in \mathbb{R}^2 \text{ are the observer gain matrices; }
\]

\[
\tilde{z}_i, \tilde{\sigma}_i \text{ are the estimates of } z_i, \sigma_i \text{, respectively.}
\]

Assumption 2. There exists a positive constant \(\sigma_i^* \) such that

\[
\|\tilde{\sigma}_i\| \leq \sigma_i^*.
\]

Let \(\tilde{z}_i = \hat{z}_i - z_i \) and \(\tilde{\sigma}_i = \hat{\sigma}_i - \sigma_i \), (6) can be expressed as

\[
\dot{\hat{z}}_i = \hat{\sigma}_i - K_1^i (\hat{z}_i - z_i),
\]

\[
\dot{\hat{\sigma}}_i = -K_2^i (\hat{z}_i - z_i) - \hat{\sigma}_i,
\]
Defining $E_{i1} = [\tilde{z}_i^T, \tilde{\sigma}_i^T]^T \in \mathbb{R}^4$, the equation (7) can be put into a matrix form as

$$
\dot{E}_{i1} = A_iE_{i1} - B_i\tilde{\sigma}_i,
$$

where $A_i = \begin{bmatrix} -K_{i1} & 1 \\ -K_{i2} & 0 \end{bmatrix}$, $B_i = \begin{bmatrix} 0_2 \\ I_2 \end{bmatrix}$.

Because A_i is a Hurwitz matrix, there is a positive definite matrix P_i satisfying the following equation:

$$
A_i^T P_i + P_i A_i = -\varepsilon_i I_4,
$$

where ε_i is a positive constant.

A distributed kinematic guidance law is designed as follows

$$
a_{id}(\varepsilon_i) = \frac{-K_i z_i}{\sqrt{z_i^2 + \Delta_i^2}} + a_{id}(p_{i0}(\theta) - \tilde{\sigma}_i)/d_i,
$$

where $a_{id} = [a_{id\alpha}, a_{id\beta}]^T \in \mathbb{R}^2$; $K_i = \text{diag}[k_{i1}, k_{i2}] \in \mathbb{R}^2$ is a kinematic gain matrix, $k_{i1}, k_{i2} \in \mathbb{R}$ and $k_{i2} \in \mathbb{R}$ are positive constants; $\Delta_i \in \mathbb{R}$ is a positive constant for avoiding large virtual control signal during transient; ϖ is updated as follows

$$
\dot{\varpi} = -\lambda (\varpi + \mu \sum_{i=1}^{N} a_{id}(p_{i0}(\theta))^T z_i),
$$

where $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$ are positive constants.

The guidance signals are prescribed as follows

$$
\psi_{id} = \text{atan2}(a_{id\alpha}, a_{id\beta}) + 2k\pi,
$$

where k is a positive integral, atan2($a_{id\alpha}, a_{id\beta}$) is the four-quadrant version of arctan($a_{id\alpha}/a_{id\beta}$).

As a consequence, the error subsystems can be expressed as follows

$$
\begin{align*}
\dot{z}_i &= -\frac{K_i z_i}{\sqrt{z_i^2 + \Delta_i^2}} + a_{id}(p_{i0}(\theta) - \tilde{\sigma}_i), \\
\dot{\varpi} &= -\lambda (\varpi + \mu \sum_{i=1}^{N} a_{id}(p_{i0}(\theta))^T z_i),
\end{align*}
$$

where $e_i = u_{id}(\cos \psi_i, \sin \psi_i)^T - u_{id}(\cos \psi_{id}, \sin \psi_{id})^T$. To move on, the following assumption is needed.

Assumption 3. The tracking error e_i is bounded by $\|e_i\| \leq \tau^*$ with τ^* is a positive constant.

B. Stability analysis

The closed-loop system of kinematic guidance law can be regarded as a cascade system formed by the observer error dynamics (8) and the distributed formation error (13). The following lemmas state the input-to-state stability (ISS) of the subsystems (8) and (13).

Lemma 1. If Assumption 1 and 2 are satisfied, the system (8) viewed as a system with the state vector being E_{i1} and the input vector being $\tilde{\sigma}_i$ is ISS.

Proof. Consider a Lyapunov function

$$
V_{i0} = \frac{1}{2}E_{i1}^T P_i E_{i1},
$$

Taking the time derivative of V_{i0} along (8), it follows that:

$$
\dot{V}_{i0} \leq -\frac{\varepsilon_i}{2} \|E_{i1}\|^2 + \|E_{i1}\| \|P_i B_i\| \|\tilde{\sigma}_i\|,
$$

When E_{i1} satisfies

$$
\|E_{i1}\| \geq \frac{2\|P_i B_i\| \|\tilde{\sigma}_i\|}{\varepsilon_i \tilde{\theta}_i},
$$

it renders $\dot{V}_{i0} \leq -\frac{\varepsilon_i}{2} (1 - \tilde{\theta}_i) \|E_{i1}\|^2$, where $0 < \tilde{\theta}_i < 1$, it can be concluded that the subsystem (8) is ISS. Then there exists a class $\mathcal{K}\mathcal{L}$ function γ_1 and a class \mathcal{K}_∞ function σ_1 as follow,

$$
\|E_{i1}(t)\| \leq \gamma_1(\|E_{i1}(0)\|, t) + \sigma_1(\|\tilde{\sigma}_i\|).
$$

Lemma 2. If Assumption 3 is satisfied, the subsystem (13), viewed as a system with the states being z_i, ϖ and the input being e_i, $\tilde{\sigma}_i$ is ISS.

Proof. Construct a Lyapunov function as

$$
V_i = \frac{1}{2} \sum_{i=1}^{N} z_i^T z_i + \frac{\varpi^2}{2\lambda^2},
$$

By differentiating V_i along (13), it follows that

$$
\dot{V}_i = \sum_{i=1}^{N} (-z_i^T K_i' z_i + z_i^T e_i - z_i^T \tilde{\sigma}_i) - \frac{\varpi^2}{\mu},
$$

where $K_i' = K_i/\sqrt{z_i^2 + \Delta_i^2}$.

Then, (17) can be rewritten as

$$
\dot{V}_i \leq -c \|E_i\|^2 + c \|E_i\| \|\sum_{i=1}^{N} (\|e_i\| + \|\tilde{\sigma}_i\|) / c \|\tilde{\sigma}_i\|,
$$

where $E_i = [z_i^T, \varpi^T]$ with $z = [z_1^T, ..., z_N^T]$ and $c = \min_{i=1,...,N} (\min(K_i'))$. As $\|E_i\| \geq \sum_{i=1}^{N} (\|e_i\| + \|\tilde{\sigma}_i\|)/c \|\tilde{\sigma}_i\|$, it renders $\dot{V}_i \leq -c(1 - \tilde{\theta}_1) \|E_i\|^2$, where $0 < \tilde{\theta}_1 < 1$, it can be concluded that the subsystem (13) is ISS, and the ultimate bound is given by

$$
\|E_i(t)\| \leq \max \left\{ \|E_i(t_0)\| e^{-c(1-\tilde{\theta}_1)(t-t_0)}, \sum_{i=1}^{N} (\|e_i\| + \|\tilde{\sigma}_i\|)/c \|\tilde{\sigma}_i\| \right\}.
$$

Theorem 1. Under Assumptions 1-3, consider the ESO (6), the guidance law (10), and the path update law (11), the closed-loop system cascaded by the subsystem (8) and (13) is ISS.

Proof. Lemmas 1 and 2 have shown that the subsystem (8) with states E_{i1} and input vector being $\tilde{\sigma}_i$ is ISS, and the subsystem (13) with states z_i, ϖ and input vector being e_i and $\tilde{\sigma}_i$ is ISS. As a result, the cascade system with states z_i, ϖ and exogenous input e_i, $\tilde{\sigma}_i$ is ISS. There exist a class $\mathcal{K}\mathcal{L}$ function γ_1 and two class \mathcal{K}_∞ function κ_1, κ_2 as follow,

$$
\|E_2(t)\| \leq \gamma_1(\|E_2(0)\|, t) + \sum_{i=1}^{N} \kappa_1(\|e_i\| + \|\tilde{\sigma}_i\|),
$$

where $E_2 = [z^T, \varpi^T]$. The proof is complete.

IV. Predictive Speed and Heading Control

This section presents the predictive speed and heading controller design.

A. Extended state observers

The heading and speed dynamics from (2) are

$$
\begin{align*}
\dot{u}_i &= \xi_i + b_{iu}\tau_{iu}, \\
\dot{\xi}_i &= r_i, \\
\dot{r}_i &= \zeta_{ir} + b_{ir}\tau_{ir},
\end{align*}
$$

where $b_{iu} = 1/m_{iu}$, $b_{ir} = 1/m_{ir}$, $\xi_i = [f_{iu}(u_i, v_i, r_i) + \tau_{iu}(l(t))/m_{iu}]$, $\zeta_{ir} = [f_{ir}(u_i, v_i, r_i) + \tau_{ir}(l(t))/m_{ir}]$.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded June 02, 2023 at 15:11:45 UTC from IEEE Xplore. Restrictions apply.
Two ESOs are used for estimating the unknown states, system uncertainties and disturbances as follows
\begin{equation}
\begin{aligned}
\dot{\hat{u}}_i &= \dot{\zeta}_u + b_{iu}\tau_{iu} - 2\omega_1(\hat{u}_i - u_i), \\
\dot{\hat{\zeta}}_{iu} &= -\omega_2^2(\hat{u}_i - u_i),
\end{aligned}
\end{equation}
and
\begin{equation}
\begin{aligned}
\dot{\hat{\psi}}_i &= \dot{\hat{r}}_i - 3\omega_2(\hat{\psi}_i - \psi_i), \\
\dot{\hat{\zeta}}_{ir} &= \dot{\hat{r}}_i + b_{ir}\tau_{ir} - 3\omega_2^2(\hat{\psi}_i - \psi_i), \\
\dot{\hat{\zeta}}_{ir} &= -\omega_2^2(\hat{\psi}_i - \psi_i),
\end{aligned}
\end{equation}
where \(\omega_1 \in \mathbb{R}\) and \(\omega_2 \in \mathbb{R}\) are parameters; \(\hat{u}_i, \hat{r}_i, \hat{\psi}_i, \hat{\zeta}_{iu}, \) and \(\hat{\zeta}_{ir}\) are estimates of \(u_i, r_i, \psi_i, \zeta_{iu}, \) and \(\zeta_{ir}\), respectively.

B. Finite-set model predictive speed controller

By using Euler discretization and the estimated information in (21), a prediction model of speed dynamics is given as
\begin{equation}
\dot{\hat{u}}_i(k + 1) = \hat{u}_i(k) + T_{xu}(\hat{\zeta}_{iu} + b_{iu}\tau_{iu}(k)),
\end{equation}
where \(\tau_{iu}(k), \hat{u}_i(k)\) denote the surge force and estimates of surge speed at \(k\)-th step; \(T_{xu}\) is sampling time.

In order to track the speed reference \(u_{id}\) given by the kinematic guidance law, a cost function is given
\begin{equation}
\begin{aligned}
J_{iu} &= \sum_{i=0}^{N_p} \rho_{iu} \| \hat{u}_i(k + l(k) - u_{id}(k + l) \right\|^2 \\
&+ \sum_{i=0}^{N_c} \beta_{iu} \| \tau_{iu}(k + l) \right\|^2,
\end{aligned}
\end{equation}
where \(N_p\) and \(N_c\) are the prediction horizon and the control horizon, respectively; \(\hat{u}_i(k + l)\) is the \(l\)-th predicted output speed at \(k\)-th step; \(u_{id}(k + l)\) denote the defined speed and control input at \(k\)-th step; \(\rho_{iu} \in \mathbb{R}\) and \(\beta_{iu} \in \mathbb{R}\) are control parameters.

The optimal control input \(\tau_{iu}\) can be selected if the optimization problem can be solved:
\begin{equation}
\begin{aligned}
\tau_{iu}(k) &= \text{argmin} J_{iu}(\hat{u}_i, u_{id}, \tau_{iu}), \\
\text{s.t.} \quad \dot{\hat{u}}_i(k + 1) &= \hat{u}_i(k) + T_{xu}(\hat{\zeta}_{iu} + b_{iu}\tau_{iu}(k)),
\end{aligned}
\end{equation}
where \(\tau_{iu}(k) = \{ \hat{\tau}_{iu}(k), ... \hat{\tau}_{iu}(k + N_c - 1) \}\) is the optimal finite sets of \(\tau_{iu}\) at \(k\)-th step. Only the first action \(\hat{\tau}_{iu}(k)\) is applied.

C. Finite-set model predictive heading controller

By using Euler discretization and the estimated information in (22), a prediction model of heading dynamics is given as
\begin{equation}
\begin{aligned}
\dot{\hat{\psi}}_i(k + 1) &= \dot{\hat{\psi}}_i(k) + T_{x\psi}(\hat{\zeta}_{ir} + b_{ir}\tau_{ir}(k)), \\
\dot{\hat{\zeta}}_{ir}(k + 1) &= \hat{\tau}_i(k) + T_{x\psi}(\hat{\zeta}_{ir} + b_{ir}\tau_{ir}(k)),
\end{aligned}
\end{equation}
where \(\tau_{ir}(k), \hat{\psi}_i(k)\) and \(\hat{\tau}_i\) denote the yaw moment, estimates of heading and angular rates at \(k\)-th step.

A cost function is designed as follows
\begin{equation}
\begin{aligned}
J_{i\psi} &= \sum_{i=0}^{N_p} \rho_{i\psi} \| \hat{\psi}_i(k + l) - \psi_{id}(k + l) \right\|^2 \\
&+ \sum_{i=0}^{N_c} \beta_{i\psi} \| \tau_{ir}(k + l) \right\|^2,
\end{aligned}
\end{equation}
where \(\hat{\psi}_i(k + l)\) is the \(l\)-th predicted output heading at \(k\)-th step; \(\psi_{id}(k + l)\) denote the defined heading and control torque; \(\rho_{i\psi} \in \mathbb{R}\) and \(\beta_{i\psi} \in \mathbb{R}\) are optimization weights.

As a result, the optimal control torque can be obtained as
\begin{equation}
\begin{aligned}
\tau_{ir}(k) &= \text{argmin} J_{i\psi}(\hat{\psi}_i, \psi_{id}, \tau_{ir}), \\
\text{s.t.} \quad \hat{\psi}_i(k + 1) &= \hat{\psi}_i(k) + T_{x\psi}(\hat{\tau}_i(k + 1), \\
\hat{\tau}_i(k + 1) &= \hat{\tau}_i(k) + T_{x\psi}(\hat{\zeta}_{ir} + b_{ir}\tau_{ir}(k))),
\end{aligned}
\end{equation}
where \(\tau_{ir}(k) = \{ \hat{\tau}_{ir}(k), ... \hat{\tau}_{ir}(k + N_c - 1) \}\) is the optimal finite sets of \(\tau_{ir}\) at \(k\)-th step, only the first part \(\hat{\tau}_{ir}(k)\) is executed.

V. SIMULATION RESULTS

Consider a network system consisting of five ASVs and one virtual leader. The communication graph of the network system can be found in Fig.2. The virtual leader is set to move along a parameterized path \(p_0(\theta) = [0.06\theta + 3, 0.06\theta + 3]^{T}\). The formation pattern is set to \(p_{d1} = [0, 0]^{T}\), \(p_{d2} = [-5, 5]^{T}\), \(p_{d3} = [5, -5]^{T}\), \(p_{d4} = [-5, 5]^{T}\), \(p_{d5} = [5, -5]^{T}\). The parameters for the proposed guidance law are set to \(K_{1i} = \text{diag}(0.35, 0.35), \lambda = 10, \mu = 10, \Delta_i = 1, K_{1i} = \text{diag}(60, 60)\) and \(K_{2i} = \text{diag}(900, 900)\). The parameters of the model predictive speed and heading controllers are set to \(\omega_{iu} = 5, \omega_{ir} = 10, \rho_{iu} = 1, \beta_{iu} = 0, \rho_{iu} = 0, \beta_{iu} = 0\) and \(T_{xu} = 0.07\), the set of all \(\tau_{iu} = \{0.05, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10\}\), and the set of torque \(\tau_{ir}\) are selected as \([-5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]\).

Simulation results are as shown in Fig.3.6. Fig.3 depicts the unmeasured speeds of neighboring ASVs can be estimated accurately. The errors of five ASVs in x-axis and y-axis are given in Fig.4. It can be seen the the errors converge to a neighborhood of the zero. Fig.5 depicts the tracking performance of the predictive surge and heading controllers. Finally, Fig.6 shows the control input of ASV1.

![Fig. 2. Communication graph.](image)

![Fig. 3. The speed correlation estimation of neighbor about ASV1.](image)
VI. Conclusions

This paper addressed the integrated distributed guidance and control for multiple under-actuated ASVs guided by a parameterized path. Each ASV subjects to unmeasured velocities of neighbors, system uncertainties and ocean disturbances. A robust distributed guidance and predictive control architecture is proposed. In the guidance loop, a robust distributed constant bearing guidance law is developed based on ESOs. In the control loop, predictive surge speed and heading controllers are designed where optimal actions are selected based on finite control sets and extended state observers. Simulation results demonstrate the effectiveness of the proposed robust distributed guidance and predictive control methods.

Fig. 4. Tracking errors of five ASVs in x-axis and y-axis.

Fig. 5. Tracking performance of ASV1 using the linear heading ESO.

Fig. 6. Control inputs of ASV1 in the speed and yaw directions.

REFERENCES