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Abstract—We consider parameterized virtual leader-guided
distributed consensus maneuvering of uncertain multi-agent sys-
tems herein. The model of the agent is in the strict-feedback
form and subject to unmatched uncertainties. In comparison
with existing results, we try to research distributed consensus
maneuvering from a distributed game perspective. Inspired by
distributed Nash equilibrium seeking approach and cooperative
learning strategy, a parallel control method is developed for
consensus maneuvering, including cooperative learning-based
neural predictors, dynamic surface control(DSC)-based parallel
control law, and parameter update law for virtual leader. It is
proved that the total closed-loop system is input-to-state stable,
and the outputs of all agents converge to the Nash equilibrium as
far as possible. The main results are demonstrated by theoretical
analysis and a simulation example.

Index Terms—Dynamic surface control, parallel control, ACP
methodology, MIMO strict-feedback systems, neural predictor

I. INTRODUCTION

Leader-following consensus control is widely applied in

coordinated operations of multi-agent systems during the past

years, such as unmanned surface/underwater vehicles [1],

[2]. Leader-following consensus control provides a powerful

method for achieving a coordinated motion under distributed

communication [3]–[5]. The existing leader-following con-

sensus control methods are further separated into consensus

tracking control methods [3] and consensus maneuvering

control methods [4], [5]. In particular, consensus maneuvering
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control methods aim to achieve coordination guided by a

parameterized virtual leader, including ordinary distributed

tracking control laws for controlled objectives and a special

update law for the leader’s parameter. Consensus maneuvering

control is also extended to containment maneuvering guided

by multiple parameterized leaders, see [6]–[8].

On one hand, these cooperative maneuvering methods in

[4]–[8] mainly focus on how to achieve the desired coor-

dinated motion under the distributed communication among

agents. However, the relationship among agents may exist

the cooperation and competition in practical applications.

Distributed game theory is one of the effective analysis tools

for multi-agent systems in competition and cooperation. In the

distributed game, each agent can make appropriate decisions

through the distributed Nash equilibrium seeking [9]. Some

distributed control methods by using the Nash equilibrium

seeking have been proposed (see [9], [10]), but distributed

consensus maneuvering based on distributed Nash equilibrium

seeking is still open. On the other hand, in the existing cooper-

ative maneuvering methods in [4]–[8], neural/fuzzy predictors

are designed to recover the uncertain nonlinearities based on

the local learning strategy. The local learning-based neural

predictor may be hard to utilize existing information of neural

networks for other similar tasks and need to be constructed

repeatedly [11].

Parallel control is an effective design tool to develop con-

trollers for complex systems [12]. Different from the existing

control methods in [4]–[8], [11] related to states passively, the

real controllers in parallel control extend to a virtual space

and are produced by a parallel system relative to practical

models. To some extent, parallel control can realize virtual-
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reality interaction. In recent years, some parallel control

methods have been developed, such as LMI-based parallel

control method [12], output-regulation-based parallel control

method [13], slide-mode-based parallel control method [14],

and backstepping-based parallel control method [15].

A parallel control method is devised by utilizing a dis-

tributed Nash equilibrium seeking approach for consensus

maneuvering of uncertain multi-agent systems guided by a

parameterized virtual leader herein. The model of the agent is

in the strict-feedback form and subject to unmatched uncertain

nonlinearities. At first, each cost function is constructed via

the control objective of consensus maneuvering, the Nash

equilibrium is obtained by calculating the partial derivative of

the cost function. Then, a neural predictor is developed based

on a distributed cooperative learning approach. Next, virtual

control laws and a parallel control law are designed by using a

dynamic-surface-control (DSC)-based parallel control design,

where a linear tracking differentiator (LTD) is constructed

to estimate the derivative of virtual control laws. At last,

we design the update law by using the distributed consensus

maneuvering error feedback. The resulting consensus maneu-

vering closed-loop is analyzed to be input-to-state stable (ISS).

Outputs of agents converge to Nash equilibrium as far as

possible.

II. PROBLEM FORMULATION

The agents can be regarded as the players in the distributed

game. The index of these players is 1, ...,M . For the ith player,

consider the dynamics in the following strict-feedback form⎧⎨⎩ ẋi,k = xi,k+1 + fk (x̄i,k), k = 1, ..., n− 1
ẋi,n = ui + fn (x̄i,n)
yi = xi,1

(1)

where xi,l ∈ R with l = 1, ...n, xi,n ∈ R, ui ∈ R, yi ∈
R represent the state, the input, and the output, respectively,

x̄i,l = [xi,1, ..., xi,l]
T ∈ R

l with l = 1, ...n, and fi,l(x̄i,l) with

l = n denotes the uncertain nonlinearities.

In the distributed game, we define N as the set of players,

τi ∈ R
m as the action of the ith player, and Ji(τ̄) : R

Mm → R
as the cost function of the ith player with τ̄ = [τT1 , ..., τTM ]T .

Obviously, Ji(τ̄) is related to the action of the ith player

and its neighboring players during distributed gaming. By

regulating τi, we can minimize Ji(τ̄). We need minimize the

cost functions of all players spontaneously as

Ji(τi, τ
∗
−i) ≥ Ji(τ

∗
i , τ

∗
−i) (2)

where τ∗i is a Nash equilibrium solution, and τ∗−i =
[τT∗

1 , ..., τT∗
i−1, τ

T∗
i+1, ..., τ

T∗
M ]T . When Ji(τ̄) is convex and con-

tinuous, there always exists a Nash equilibrium solution. The

Nash equilibrium τ∗i satisfies ∂Ji(τ
∗)/∂τi = 0m.

A directed graph G = (V, ε,Λ) is introduced as the

mathematical tool to describe the property of communication

topology with a vertex set V = (n1, ..., nM ), an edge set

ε = {(ni, nj) ∈ V × V}, and an adjacency matrix Λ =
[ai,j ] ∈ R

M×M , where ni is a node, and (ni, nj) ∈ ε is a

directed information access from agent j to agent i. Note that

if (ni, nj) ∈ ε, then ai,j > 0, otherwise if (ni, nj) /∈ ε. In

this work, there is no self connection such that ai,i = 0.

The Laplacian matrix of the directed graph G is defined

as L ∈ R
M×M := D − Λ, where D = diag(d1, ..., dM ) with

di =
∑

j∈Ni
ai,j is a degree matrix and Ni = {j|(ni, nj) ∈ ε}

is a neighbor set of node i. Similar to the definition of the fol-

lowers’ adjacency matrix, the adjacency matrix between play-

ers and the virtual leader is defined as B = diag(b1, ..., bM ),
where bi > 0 means that the node can be access to the leader,

otherwise bi = 0.

Assumption 1. There exists a directed spanning tree in the

topology.

The control objectives of consensus maneuvering include

the following two aspects

• Geometric objective: Define Ni as the set of neighbors.

Players are to minimize the consensus maneuvering error

with their neighbors and the desired parameterized virtual

leader as

minΣj∈Niai,j
1

2
|yi − yj |2 + bi

1

2
|yi − yr(θ)|2. (3)

• Dynamic objective: The path variable θ satisfies a speed

assignment, which θ̇ nearly converges to a desired veloc-

ity signal vs:

lim
t→∞ |θ̇ − vs| < δ ∈ R

+. (4)

Assumption 2. Assume that yr(θ) and yθr (θ) are bounded.

III. CONSENSUS MANEUVERING CONTROLLERS BASED

ON DISTRIBUTED NASH EQUILIBRIUM SEEKING

A. Distributed game model for consensus maneuvering of
multi-agent systems

For the ith player, we can define the following cost function

Ji(y) = Σj∈Ni
ai,j

1

2
|yi − yj |2 + bi

1

2
|yi − yr(θ)|2 (5)

where y = [y1, ..., yM ]T . Due to Ji(y) being continuous and

convex, there exists a Nash equilibrium.

Then, we can take the partial derivative of Ji(y) related to

yi, one has

∂Ji(y)

∂yi
= Σj∈Ni

ai,j(yi − yj) + bi(yi − yr(θ)) (6)

where i ∈ N .

Defining Jd(y) = [(∂J1(y)/∂y1), ..., (∂JM (y)/∂yM )]T ,

Eq. (6) can be further transformed into a vector form

Jd(y) = (L+B)y − b⊗ yr(θ) (7)

where b = [b1, ..., bM ]T .

Letting Jd(y) = 0M , we can calculate the unique Nash

equilibrium y∗ as

y∗ = (L+B)−1b⊗ yr(θ) (8)

where y∗ = [y∗1 , ..., y
∗
M ]T .
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B. Neural predictor based on cooperative learning

Step 1. Defining Jd
i = ∂Ji(y)/∂yi, J̇

d
i along (1) satisfies

J̇d
i = (di + bi)xi,2 − Σj∈Ni

ai,jxj,2

− biy
θ
r (θ)θ̇ + gi,1(xi,1, xj,1)

(9)

where di = Σj∈Ni
ai,j , and gi,1(xi,1, xj,1) = (di +

bi)fi,1(xi,1)− bifj,1(xj,1). Then, a neural network is utilized

to approximate gi,1(xi,1, xj,1):

gi,1(xi,1, xj,1) = WT
i,1ϕi,1(ξi,1) + εi,1 (10)

where Wi,1 ∈ R
m denotes a weight value matrix of the output

layer satisfying ‖Wi,1‖ ≤ W ∗
i,1 with W ∗

i,1 ∈ R
+, ϕi,1(·) ∈ R

m

denotes the output of the hidden layer consisting of Sigmoid-

like activation functions, ξi,1 = [xi,1, xj,1]
T denotes an input

vector of neural network with j ∈ Ni, and εi,1 ∈ R is an error

with |εi,1| ≤ ε∗i,1 and ε∗i,1 ∈ R
+.

Then, a neural predictor for (9) is designed as:

˙̂
Jd
i = (di + bi)xi,2 − ΣM

j∈Ni
ai,jxj,2 − biy

θ
r (θ)θ̇

+ ŴT
i,1ϕi,1(ξi,1)− (ζi,1 + ρi,1)(Ĵ

d
i − Jd

i )
(11)

where ζi,1 ∈ R
+ denotes a tuning parameter, ρi,1 ∈ R

+

represents a control gain, and Ŵi,1 ∈ R is an estimation of

Wi,1.

We develop the following update law of Ŵi,1 by using a

cooperative learning approach

˙̂
W i,1 =− Γi,1[ϕi,1(ξi,1)J̃

d
i + λi,1Ŵi,1

+ kWi,1
Σj∈Ni

ai,j(Ŵi,1 − Ŵj,1)]
(12)

where Γi,1 ∈ R
+, λi,1 ∈ R

+, kWi,1 ∈ R
+ are tuning parame-

ters, and J̃d
i = Ĵd

i − Jd
i .

Step k. According to (1), recall the dynamics of xi,k as

follows

ẋi,k = xi,k+1 + fk(x̄i,k). (13)

By using a neural network, fk(x̄i,k) can be recovered as

fk(x̄i,k) = WT
i,kϕi,k(ξi,k) + εi,k (14)

where Wi,k ∈ R
m denotes a weight value matrix satisfying

‖Wi,k‖ ≤ W ∗
i,k with W ∗

i,k ∈ R
+, ϕi,k(·) ∈ R

m denotes

the neurons in the hidden layer consisting of Sigmoid-like

activation functions, ξi,k = x̄i,k denotes an input vector of

neural network, and εi,k ∈ R satisfies |εi,k| ≤ ε∗i,k with

ε∗i,k ∈ R
+ being the upper bound of εi,k.

Then, we can design a neural predictor for (13) as:

˙̂xi,k = xi,k+1 + ŴT
i,kϕi,k(ξi,k)

− (ζi,k + ρi,k)(x̂i,k − xi,k)
(15)

where ζi,k ∈ R
+ denotes a tuning parameter, ρi,k ∈ R

+ is a

control gain, and Ŵi,k ∈ R
m is an estimation of Wi,1.

Based on a cooperative learning approach, we can develop

the following update law for Ŵi,k as

˙̂
W i,k =− Γi,k[ϕi,k(ξi,k)x̃i,k + λi,kŴi,k

+ kWi,k
Σj∈Ni

ai,j(Ŵi,k − Ŵj,k)]
(16)

where Γi,k ∈ R
+, λi,k ∈ R

+, and kWi,k
∈ R

+, and x̃i,k =
x̂i,k − xi,k.

Step n. Recall the dynamics of xi,n as follows

ẋi,n = ui + fi,n(x̄i,n). (17)

Letting xi,n+1 = ui+ fi,n(x̄i,n), the dynamics of xi,n+1 is

yielded by

ẋi,n+1 = u̇i + Fi(x̄i,n) (18)

where Fi(x̄i,n) = Σn
l=1

∂fi,n(x̄i,n)
∂xi,l

ẋi,l.

Similarly, we can use the following neural network to

recover Fi(x̄i,n) as

Fi(x̄i,n) = WT
i,nϕi,n(ξi,n) + εi,n (19)

where Wi,n ∈ R
m denotes a weight value matrix of the

output layer satisfying ‖Wi,n‖ ≤ W ∗
i,n with W ∗

i,n ∈ R
+,

ϕi,n(·) ∈ R
m denotes the neurons in the hidden layer

consisting of Sigmoid-like activation functions, ξi,n = x̄i,n

denotes an input vector of neural network, and εi,n ∈ R

satisfies |εi,n| ≤ ε∗i,n with ε∗i,n ∈ R
+ being the upper bound

of εi,n.

A neural predictor for (17) is devised as:

˙̂xi,n+1 = u̇i + ŴT
i,nϕi,n(ξi,n)

− (ρi,n+1 + ζi,n+1)(x̂i,n+1 − xi,n+1)
(20)

where ζi,n+1 ∈ R denotes a positive tuning parameters,

ρi,n+1 ∈ R denotes a positive control gain, and Ŵi,n ∈ R
m

is an estimation of Wi,n.

By using the cooperative learning approach, we can develop

the following update law for Ŵi,n is updated as

˙̂
W i,n =− Γi,n[ϕi,n(ξi,n)x̃i,n+1 + λi,nŴi,n

+ kWi,nΣj∈Niai,j(Ŵi,n − Ŵj,n)]
(21)

where Γi,n ∈ R
+, λi,n ∈ R

+, and kWi,n ∈ R
+ are tuning

parameters, and x̃i,n = x̂i,n − xi,n.

Defining W̃i,1 = Ŵi,1 − Wi,1, W̃i,k = Ŵi,k − Wi,k, and

W̃i,n = Ŵi,n−Wi,n, and the subsystem consisting of J̃d
i , x̃i,l,

x̃i,n+1, W̃i,1, W̃i,l, and W̃i,n is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃Jd
i = −(ρi,1 + ζi,1)J̃

d
i + ŴT

i,1ϕ(ξi,1)− εi,1
˙̃xi,l = −(ρi,l + ζi,l)x̃i,l + ŴT

i,lϕ(ξi,l)− εi,l
˙̃xi,n+1 = −(ρi,n+1 + ζi,n+1)x̃i,n+1

+ ŴT
i,nϕ(ξi,n)− εi,n

˙̃W i,1 = −Γi,1[ϕi,1(ξi,1)J̃
d
i + λi,1Ŵi,1

+ kWi,1Σj∈Niai,j(Ŵi,1 − Ŵj,1)]
˙̃W i,l = −Γi,l[ϕi,l(ξi,l)x̃i,l + λi,lŴi,l

+ kWi,l
Σj∈Ni

ai,j(Ŵi,l − Ŵj,l)]
˙̃W i,n = −Γi,n[ϕi,n(ξi,n)x̃i,n+1 + λi,nŴi,n

+ kWi,n
Σj∈Ni

ai,j(Ŵi,n − Ŵj,n)]

(22)

where l = 2, ..., n− 1. Consider the following lemma:

Lemma 1. The subsystem (22) is ISS.

Proof. Consider the following Lyapunov function candidate

for the subsystem (22) as Vp = 1
2Σ

M
i=1Σ

n+1
l=1 x̃

2
i,l +
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1
2Σ

M
i=1Σ

n
l=1W̃

T
i,lΓ

−1
i,l W̃i,l, where x̃i,n = 0. The time

derivative of Vp satisfies V̇p ≤ −λmin(ρ + ζ)‖X̃‖2 −
(λmin(λ)+λmin(kW )λmin(L))‖W̃‖2+‖X̃‖‖ε‖+(λmax(λ)+
λmax(kW )λmax(L))‖W̃‖‖W‖ ≤ −c1‖E‖2 + ‖E‖‖h‖, where

X̃ = [J̃d
1 , x̃1,2, ..., x̃1,n+1, ..., J̃

d
M , x̃M,2, ..., x̃M,n+1]

T ,

W̃ = [W̃T
1,1, ..., W̃

T
1,n, ..., W̃

T
M,1, ..., W̃

T
M,n]

T ,

ε = [ε1,1, ..., ε1,n, ..., εM,1, ..., εM,n]
T ,

Wi = [WT
1,1, ...,W

T
1,n, ...,W

T
M,1, ...,W

T
M,n]

T ,

ρ = diag{ρ1,1, ..., ρ1,n, ..., ρM,1, ..., ρM,n},

ζ = diag{ζ1,1, ..., ζ1,n, ..., ζM,1, ..., ζM,n},

λ = diag{λ1,1, ..., λ1,n, ..., λM,1, ..., λM,n}, and

kW = diag{kW1,1 , ..., kW1,n , ..., kWM,1
, ..., kWM,n

}.

E = [‖X̃‖, ‖W̃‖]T , h = [‖ε‖, (λmax(λ) + λmax(L))‖W‖]T ,

and c1 = min{λmin(ρi + ζi), (λmin(λi) + λmin(L))}.

Since ‖E‖ ≥ (‖ε‖+(λmax(λi) + λmax(L)) ‖W‖)/η1c1 ≥
‖h‖ /η1c1 makes V̇p ≤ −(1− η1)c1‖E‖2, where 0 < η1 < 1,

we can prove the system (22) to be ISS. Consider

κp1 (s) = λmin (P ) s2/2 and κp2 (s) = λmax (P ) s2/2
with P = diag(1,Γ−1

1,1, ...Γ
−1
1,n, ...,Γ

−1
M,1, ...Γ

−1
M,n),

and there exists a KL function α1(·) and K∞
functions κε(·) and κW (·) satisfying ‖E (t)‖ ≤
α1 (‖E (t0)‖ , t− t0) + κε (‖ε‖) + κW (‖W‖), where

κε (s) = (s
√

λmax (P ))/ (η1c1
√

λmin (P )) and κW (s) =
(s(λmax(λ) + λmax(L)

√
λmax (P ))/(η1c1

√
λmin (P )).

Though we prove the the proposed cooperative learning-

based neural predictor is ISS. But it should be that the

proposed predictor is only suitable for consensus maneuvering.

Because containment maneuvering has multiple parameter-

ized virtual leaders, the how to design a similar cooperative

learning-based neural predictor for containment maneuvering

is still open.

C. DSC-based parallel control law

Step 1. We consider θ satisfying θ̇=vs − ω. The dynamics

of Ĵd
i is rewritten as:

˙̂
Jd
i = (di + bi)xi,2 − Σj∈Ni

ai,jxj,2 − biy
θ
r (θ)(vs − ω)

+ ŴT
i,1ϕi,1(ξi,1)− (ζi,1 + ρi,1)J̃

d
i

(23)

where the definitions of vs and ω are same with Section II.
From (23), we develop the first virtual control law αi,1 as

αi,1 =
1

di + bi
{ − ρi,1J

d
i +Σj∈Ni

ai,jxj,2

+ biy
θ
r (θ)vs − ŴT

i,1ϕi,1(ξi,1)}.
(24)

Without utilizing the first-order low-pass filter in the tradi-

tional DSC method, a second-order LTD is employed in DSC

method as follows:{
v̇i,1 = vdi,1,
v̇di,1 = −γ2

i,1[(vi,1 − αi,1) + 2(vdi,1/γi,1)]
(25)

where γi,1 ∈ R
+ denotes the time constant of TD.

We substitute (24) into (23), and it follows that:

˙̂
Jd
i =− ρi,1Ĵ

d
i − ζi,1J̃

d
i + biy

θ
r (θ)ω

− (di + bi)x̃i,2 + (di + bi)ẑi,2 + ιi,1
(26)

where ẑi,2 = x̂i,2 − ιi,2, ιi,1 = vi,1 −αi,1, and |vi,1 −αi,1| ≤
ι∗i,1 with ι∗i,1 ∈ R

+.

Step k. Construct a new error surface ẑi,k = x̂i,k − vi,k−1,

and take its dynamics as follows

˙̂zi,k = xi,k+1 + ŴT
i,kϕi,k(ξi,k)− vdi,k−1

− (ζi,k + ρi,k)(x̂i,k − xi,k)
(27)

Then, we construct the kth virtual control law αi,k to

stabilize (27)

αi,k = −ρi,kzi,k + vdi,k−1 − ŴT
i,kϕi,k(ξi,k)− ei,k−1. (28)

where ei,1 = (di + bi)Ĵ
d
i and ei,k−1 = ẑi,k−1.

Similarly, an estimated derivative vdi,k related to αi,k can be

obtained by the following second-order linear TD as{
v̇i,k = vdi,k,

v̇di,k = −γ2
i,k[(vi,k − ai,k) + 2(vdi,k/γi,k)]

(29)

where γi,k ∈ R
+ denotes the time constant.

Then, it follows that by taking (28) into (27)

˙̂zi,k =− ρi,kẑi,k − ζi,kx̃i,k − x̃i,k+1

+ ẑi,k+1 − ei,k−1 + ιi,k,
(30)

where ẑi,k+1 = x̂k+1−vi,k, ιi,k = vi,k−αi,k, and and |ιi,k| ≤
ι∗i,k with ι∗i,k ∈ R

+.

Step n. Letting ẑi,n = x̂i,n − vi,n−1, consider the model of

ẑi,n as follows

żi,n = xi,n+1 − vdi,n−1. (31)

Then, we can obtain the following virtual control law

αi,n = −ρi,nzi,n − ẑi,n−1 + vdi,n−1 (32)

where ρi,n ∈ R
+.

Similarly, an estimated derivative vdi,n related to αi,n can

be obtained by the following TD as{
v̇i,n = vdi,n,
v̇di,n = −γ2

i,n[(vi,n − ai,n) + 2(vdi,n/γi,n)],
(33)

where γi,n ∈ R
+.

The dynamics of ẑi,n is further transformed via substituting

(28) into (31) into

żi,n = −ρi,nzi,n + zi,n+1 − ẑi,n−1 + ιi,n (34)

where ιi,n = vi,n − αi,n, and |ιi,n| ≤ ι∗i,n with ι∗i,n ∈ R
+.

Step n+1. Define the following error surfaces zi,n+1 and

ẑi,n+1 {
zi,n+1 = xi,n+1 − vi,n
ẑi,n+1 = ẑi,n+1 − vi,n.

(35)

˙̂zi,n+1 is given by

˙̂zi,n+1 = u̇i + ŴT
i,nϕi,n(ξi,n)− (ρi,n+1 + ζi,n+1)

× x̃i,n+1 − vdi,n.
(36)

A parallel control law ui is designed for consensus maneu-

vering as follows:

u̇i =− ρi,n+1zi,n+1 + vdi,n−1 − ŴT
i,nϕi,n(ξi,n)

+ ζi,n+1x̃i,n − ẑi,n.
(37)
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Substituting (37) into (36), one has:

˙̂zi,n+1 = −ρi,n+1ẑi,n+1 − ρi,n+1x̃i,n+1 − ẑi,n. (38)

D. Update law for the virtual leader

The update of virtual leader is determined by its neighboring

followers. Therefore, the following update law is developed

with the information of its neighboring followers{
θ̇ = vs − ω,

ω = −μ
∑M

i=1 biy
θ
r (θ)Ĵ

d
i

(39)

with μ ∈ R being a positive tuning parameter.

The error subsystem consisting of Ĵd
i , ẑi,k, zi,n, and ẑi,n+1

is summarized as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
Jd
i = −ρi,1Ĵ

d
i − ζi,1J̃

d
i + biy

θ
r (θ)ω

− (di + bi)x̃i,2 + (di + bi)ẑi,2
˙̂zi,k = −ρi,kẑi,k − ζi,kx̃i,k − x̃i,k+1

+ ẑi,k+1 − ei,k−1 + ιi,k
żi,n = −ρi,nzi,n + zi,n+1 − ẑi,n−1 + ιi,n,
˙̂zi,n+1 = −ρi,n+1ẑi,n+1 − ρi,n+1x̃i,n+1 − ẑi,n
ω = −μ

∑M
i=1 biy

θ
r (θ)Ĵ

d
i

(40)

where k = 2, ..., n− 1.

Lemma 2. The subsystem (40) is ISS.

Proof. Define Ẑi = [Ĵd
i , ẑi,2, ..., ẑi,n−1, zi,n, ẑi,n+1]

T . Con-

sider a Lyapunov function Vd = 1
2Σ

M
i=1Ẑ

T
i Ẑi. Its time deriva-

tive satisfies V̇d ≤ −λmin(ρ)‖Ẑ‖2 + c3‖Ẑ‖‖X̃‖+ ‖Ẑ‖‖ι‖ ≤
−λmin(ρ)‖Ẑ‖2 + ‖Ẑ‖‖U2‖, where Ẑ = [ẐT

1 , ..., Ẑ
T
M ]T ,

ι = [ι1,1, .., ιM,1, .., ι1,n−1, .., ιM,n−1]
T c3 = λmax(ζ) +

di + bi, and U2 = [c3‖X̃‖, ‖ι‖]T . Note that ‖Ẑ‖ ≥
(c3‖X̃ + ‖ι‖)‖/η2λmin(ρ) ≥ (‖U2‖‖/η2λmin(ρ)) makes

V̇d ≤ −λmin(ρ)(1 − η2)‖Ẑ‖2, where 0 < η2 < 1. we

can prove the system (40) to be ISS with a KL class func-

tion β2(·) and two K∞ class functions κX̃(·) and κι(·) as

‖Ẑ(t)‖ ≤ β2(‖Ẑ(t0)‖, t− t0)+ (κX̃(‖X̃‖)+κι(‖ι‖)), where

κZ̃(s) = (c3s)/(η2λmin(ρ)) and κι(s) = s/(η2λmin(ρ)).
Theorem 1. For the multi-agent system (1), the resulting

closed-loop system is ISS based on the cooperative learning-

based neural predictors (11), (12), (15), (16), (20) and (21),

DSC-based parallel control laws (24), (28), (32), and (37),

and update law for the virtual leader (39) under Assumptions
1-2. Moreover, the outputs of all agents converge to the Nash

equilibrium as far as possible.

Proof. The detailed proof process can be refered to [4], and

a biref analysis is given herein for saving space. The resulting

consensus maneuvering closed-loop is cascaded by subsystems

(22) and (40). These subsystems (22) and (40) have been

proved to be ISS, separately. The state of the subsystem (22)

X̃ is an input of the subsystem (40). According to Lemma
4.7 in [16], we can prove the closed-loop to be ISS. Since J̃ i

d

and Ĵ i
d have been proved to be bounded, J i

d can be proved

to be bounded, too. Letting y = [y1, ..., yM ]T , we obtain

Jd(y) = (L+B)y−b⊗yr. One has ‖y−(L+B)−1b⊗yr(θ)‖ ≤
‖Jd(y)‖/λmin(L+B). Therefore, the outputs of all agents

can be proved to converge to the Nash equilibrium as far as

possible.

According to properties of input-to-state stable systems, all

error signals in the resulting closed-loop is ultimate bounded.

Therefore, two objectives of distributed consensus maneuver-

ing is also satisfied.

IV. A NUMERICAL SIMULATION EXAMPLE

Consider an uncertain multi-agent systems shown in Fig. 1.

Two followers labeled as 1, 2, and a virtual leaders labeled as

0. The virtual leader moves along yr(θ) = sin(θ) with vs = 1.

The dynamics of the follower is given by⎧⎨⎩
ẋi,1 = xi,2 + 0.15x2

i,1,
ẋi,2 = ui + 0.15x2

i,1 + cos(xi,2),
yi = xi,1.

(41)

The parameters used in the simulation are ρi,1 = 10, ρi,2 =
ρi,3 = 1, γi,1 = γi,2 = 200, Γi,1 = 10000, Γi,2 = 100,

λi,1 = λi,2 = 5× 10−4, kWi,1
= 1× 10−5, kWi,2

= 1× 10−3,

ζi,1 = 90, ζi,2 = 19, μ = 0.5. Fig. 2 shows that the output

trajectories of multi-agent systems can track the virtual leader

based on the proposed method. Fig. 3 demonstrates that the

unmatched uncertain nonlinearities can be estimated by the

designed NN. Fig. 4 plots the control input u1.

Fig. 1. The communication topology.
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Fig. 2. Output trajectories.

V. CONCLUSION

In this paper, parameterized virtual leader-guided consensus

maneuvering was investigated based on the distributed game

for strict-feedback multi-agent systems in the presence of

unmatched uncertainties. A distributed consensus maneuvering

method was proposed by using the distributed Nash equilib-

rium seeking approach and the DSC-based parallel control

method. The proposed distributed consensus maneuvering

method could minimize the cost function of consensus ma-

neuvering in the distributed game, and enabled the stability of

the resulting closed-loop system. At last, a simulation example
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was carried out to verify the efficacy of the proposed consensus

maneuvering controllers based on distributed game and DSC-

based parallel control.

In future works, we consider extend this work to the follow-

ing aspects. Firstly, we will further consider the agent subject

to faults and DoS attacks. Secondly, we will consider data

corruption during the cooperative learning process. Thirdly,

safety of the parallel system is also our one of research

interests.
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