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Abstract—The inability of semantic segmentation methods to

detect anomaly road obstacles not pre-defined in the datasets

significantly hinders the safety-critical application in autonomous

driving. The excessively complex anomaly detection approaches

cannot accommodate the constraints on the inference time of

intelligent vehicles. Inspired by the fact that humans have a

natural instinct to be curious about unknown objects in a

new environment, we propose a novel curiosity-driven attention

mechanism (CuDAM) for anomaly road obstacles segmentation.

CuDAM adopts the attention map as a new uncertainty judging

criterion and utilizes it to improve the efficiency of the model.

Specifically, CuDAM is composed of three parts: 1) an attention

module for generating an attention map; 2) a reward mech-

anism for encouraging the network to focus its attention on

uncertain regions; 3) an attention loss function for widening

the distance between the attention values of deterministic and

uncertain pixels. Different from previous approaches, CuDAM

can improve both anomaly detection and semantic segmentation

performance without complex operations and training, which

makes it widely applicable to existing semantic segmentation

models. The result of qualitative and quantitative experiments

shows that such a straightforward approach achieves consistent

significant improvements in anomaly detection performances with

the various uncertainty estimation methods, demonstrating the

broad applicability of CuDAM.

Index Terms—Autonomous driving, anomaly detection, Cu-

DAM, attention module, semantic segmentation.

I. INTRODUCTION

T
HE last decades marked tremendous progress in au-
tonomous driving [1]–[8]. Self-driving vehicles are ur-

gently demanded in life scenarios or dangerous environments
which are unreachable to humans, and safety is a crucial
concern for its application. Autonomous driving platforms
build on accurate visual perception systems [9]–[11], in which
semantic segmentation is an essential technology for pixel-
wise classification of camera images. Recent studies in se-
mantic segmentation focus on how to improve the precision
of segmentation performance. However, the highly accurate
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Fig. 1. Anomaly scenarios overview. The semantic segmentation model
overconfidently classifies the anomaly obstacles as one of the pre-defined
classes, which causes serious security risks (as pointed out by the red arrows).
We propose a CuDAM method that makes the model focus on the abnormal
target and obtains the final prediction of segmentation labels with unexpected
road obstacles identified.

pixel-level classification of objects is based on the premise
of a strongly supervised deep learning approach by training
models using large, fully annotated datasets. The segmentation
models can only classify pre-defined categories in the datasets,
which implies an overly idealistic assumption that all possible
objects are included in the training set. Unfortunately, the real
world is open and unexpected things may happen at any time.
Faced with an unknown abnormal target (e.g., a cat suddenly
jumping onto the road in Fig. 1), models may fail to recognize
it and overconfidently classifies it into a pre-defined class. This
scenario creates a severe safety hazard and greatly limits the
application of deep learning algorithms in autonomous driving.
Also, it is not practical to collect a dataset containing all types
of obstacles that may appear on the road. Therefore, for a
perception network, it is essential to train it to have the ability
to identify anomalous obstacles on the road.

The problem of enabling models to detect anomaly road
obstacles has been tackled in several works of [12]–[16].
Based on the intuition that anomalous targets tend to have low
prediction probabilities, the uncertainty estimation approaches
are one class of methods to obtain anomaly scores by de-
signing different functions to calculate the uncertainty prob-
abilities. However, since the models are often overconfident
about the anomalous objects, the detection results are noisy
and inaccurate. Another major class of methods accomplishes
anomalous obstacle detection by adding additional training
tasks. Some approaches train the model by utilizing external
out-of-distribution (OoD) datasets as samples in this class.
In contrast, others leverage feature reconstruction methods
to manually design or learn features of unknown classes to
distinguish anomalous classes. The generated models are also
adopted by some methods to re-synthesize the input images.
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Although such works have been validated to be effective,
they necessitate a lengthy inference time or add a non-trivial
amount of labor intensity. Meanwhile, retraining may de-
crease the semantic segmentation performance of the original
network. Consequently, an exciting question naturally arises:
Can we design an anomaly obstacles segmentation approach
by exploring a balanced solution among the two categories
of methods mentioned above? This method improves the
performance of the uncertain method without significantly
increasing the computational amount and training difficulty,
and without affecting the semantic segmentation accuracy.

We are inspired by the fact that humans are naturally curious
about objects they are not familiar with [17]. This curiosity
drives us to pay more attention to unknown objects in new
scenarios to improve learning efficiency. This motivates us
to use attention as a new measure of whether an object is
unexpected or not. As shown in Fig. 1, the curiosity-driven
attention can both help the model identify anomalous targets
and improve the training efficiency of the neural network by
enabling the network to focus on learning uncertain regions
and less on already proficient categories. Implementing the
above approach involves two practical problems: a) how to
train the network to have this curiosity attention to focus
on anomalous obstacles. b) how to use the curiosity-driven
attention graph to identify anomalous obstacles.

In this paper, we propose a CuDAM approach for anomaly
road obstacles segmentation within autonomous driving. First,
an attention map of the same size as the intermediate input
features is generated based on the intermediate layer features.
Then, the softmax function is taken to recalculate the attention
values, which ensures that the sum of the attention map is
a certain number. The setting forces the model to allocate
attention rationally with limited attention. Based on this, we
propose a reward mechanism similar to reinforcement learning
to give appropriate rewards based on the attention map, which
encourages the model to focus on uncertain regions. Finally,
an attention loss function is proposed to further enlarge the
distance of the attention value between certain and uncertain
pixels. The above approach allows us to train a semantic
segmentation network incorporating the CuDAM. Anomalous
obstacle segmentation can be achieved by integrating the
attention graph with the uncertainty score.

CuDAM is a plug-and-play method that can be widely
applied in semantic segmentation networks to improve the
performance of anomalous obstacle detection while enhancing
semantic segmentation capabilities. Quantitative and qualita-
tive experiments are conducted to show the contribution of
our approach. To analyze the effects of attention mechanisms
from an interpretable perspective, we then visualize the atten-
tion model and compare the effects of different experimental
settings on attention.

The main contributions of our work are as follows:
• We present a CuDAM method for anomaly road obstacles

segmentation, which is a novel trial to utilize an attention
mechanism to tackle the anomaly detection problem.
• The curiosity-driven attention is a new form of attention

mechanism closer to the laws of human cognition, which can
be used to enhance anomaly detection performance based on

various uncertainty methods.
• The proposed method improves the performance of both

pixel-wise anomaly detection and semantic segmentation with-
out significantly increasing the number of parameters and
complex training processes.

II. RELATED WORKS

Recent works [3]–[8] on semantic segmentation [4], ob-
ject detection [3], small object detection [6], [7], lane line
detection, traffic light recognition, and more have led to
breakthroughs in improving autonomous driving perception
performance. Despite the advances, anomaly detection is still
a safety-critical task. The task of anomaly detection is to
address security concerns in real-world scenarios where the
system is confronted with unknown targets that do not exist
or rarely occur in the dataset. A large part of anomaly
detection work is focused on the image level, while pixel-wise
anomaly segmentation as an intensive prediction task is more
challenging. In this section, we review the approaches which
could be used for pixel-wise anomaly segmentation within
autonomous driving. We divide these methods into two broad
categories: the method based on uncertainty estimation and the
method based on introducing additional training tasks.

A. Anomaly Segmentation via Uncertainty Estimation

The most straightforward method to detect anomalies is
based on uncertainty estimation approaches which are driven
by searching for an effective uncertainty calculation function.
The uncertainty can be interpreted as a pixel-wise anomaly
score to detect unexpected obstacles on the road. A higher
uncertainty score means a higher abnormal score. As one
of the initial works, [18] derives the uncertainty score by
using Bayesian neural networks with a Monte Carlo dropout
estimate. Several follow-up studies in [19], [20] tackle the
problem utilizing the Bayesian method. However, Bayesian
segmentation networks are slow in inference due to their
multiple forward passes in the network, with Monte Carlo
dropouts in each frame. A more natural and simple intuition
is that a normal object has a higher maximum softmax
probability (MSP) than an (OoD) sample [21]. Alternatively,
max logits have been shown to be a more valid value
for assessing uncertainty than MSP in [22]. The work of
[23] proposes a standardized calculation method to obtain
class-conditioned standardized max logits (SML) to replace
max logits to evaluate uncertainty. While these methods are
effective baselines for image-level anomaly detection, they
tend to misclassify object boundaries as anomalies. SML
suppresses class boundaries and applies a dilated smoothing to
consider local semantics, but the challenge of false positives at
the boundary still exists. Without fine-tuning with additional
outlier data, it is difficult for the uncertainty-based anomaly
segmentation methods to obtain accurate OoD detection results
due to the misclassification caused by over-confidence and
boundary false positive problems.
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B. Anomaly Segmentation via Introducing Additional Training
Tasks

Several studies utilize additional training tasks for anomaly
detection. These detection approaches can be divided into three
concepts: feature reconstruction, auxiliary dataset, and image
re-synthesis. Anomaly segmentation via feature reconstruction
uses handcrafted or learned features to determine a class
label [13], [16], [24]–[28]. The works of [16], [26], [27]
suggest that anomalies can be segmented by reconstructing the
normality of input and considering any kind of deviation from
its anomalous. Although those approaches achieve excellent
performance at the object level, they are challenged by the
dependence on an accurate pixel-wise segmentation prediction,
by the complexity of reconstruction models, and also by the
low quality of the reconstructed features. Approaches based
on auxiliary datasets utilize external datasets as samples of
unexpected objects to improve the anomaly detection per-
formance in [29], [30]. The works of [31], [32] modify the
segmentation network as a muti-task model and train a network
to differentiate inliers against OoD samples. However, the
occurrence of corner cases is extremely accidental and random,
it is impractical to collect all possible anomalies to train
the model, which weakens the portability of the algorithm.
Instead of using existing data directly, image re-synthesis-
based methods are proposed in [15], [33], [34], which leverage
autoencoders to synthesize anomalous samples. The works of
[35], [36] assume that the reconstructed image region can
better retain the features of the known class region compared to
the OoD samples, thereby distinguishing the unknown obsta-
cles. More recent methods use a generative adversarial network
(GAN) to re-synthesize the input image from the predicted
semantic map in [12], [15]. However, such approaches require
a considerable amount of labor intensity or necessitate a
lengthy inference time that is critical in semantic segmentation.
While the additional training allows the model to achieve
better results in anomaly detection than the uncertainty-based
method, it also leads to lower performance in the original
semantic segmentation task due to the challenge of balancing
the training effects of different complex tasks.

III. METHODOLOGY

This section presents our CuDAM method for anomalous
road obstacles segmentation. We first present our motivation in
subsection A, then introduce the overall framework of CuDAM
in subsection B, the attention module in subsection C, and the
reward mechanism in subsection D. Finally, The training and
inference procedures are described in subsection E.

A. Motivation

Humans have a natural instinct to identify unknown object
instances in the environment quickly. This curiosity-driven
attention can help humans learn new things more efficiently.
This motivates us to propose a new CuDAM method. Our
overall thinking is to train the model to focus on its uncertain
regions so that it can have human-like curiosity. By using this
attention map and combining it with the output of the network,

the vehicles can naturally learn to recognize unexpected ob-
stacles on the road. A higher attention span means that this
area is more likely to be abnormal.

To implement this idea, a reward mechanism is proposed
which is similar to reinforcement learning. Since high attention
value areas deserve more helpful information, the regions
with high attention values are rewarded with ground truth
(GT) information to motivate the model to learn the deci-
sion boundary of the attention map. This inspiration is also
similar to the teacher-student mechanism of the life scenario,
where the student learns to admit their lack of confidence
in identifying the category of a certain position, rather than
just giving an over-confidence wrong answer. Then the teacher
takes responsibility for answering the uncertain question of the
student. Following the above simple strategies, the curiosity-
driven attention approach is proposed to identify unexpected
road obstacles in complex driving scenes.

B. Overall Architecture
Our method overview is illustrated in Fig. 2. Semantic seg-

mentation models can generally be summarised as an encoder-
decoder structure. The input image is initially transformed
into high-dimensional features by the encoder. Then, given
this intermediate feature as input, CuDAM first infers a 2D
attention map. In particular, attention should not be infinite. A
constant sum of attention values will force the entire pixels of
the attention map to compete with each other in order to obtain
the maximum benefit. This avoids the loophole that the model
negatively sets all attention values to be large. Afterward,
we select the multi-level multi-scale features generated by
encoders fused with the attention map and input them into
the decoder network to obtain the prediction output. After ob-
taining the attention graph and the prediction output, we adopt
a reward mechanism that combines the correct segmentation
answer with the output according to the attention value. This
motivates the model to learn to assign high attention values
to regions with high uncertainty. To widen the gap between
the attention values of certain and uncertain pixels, we add a
penalty to the loss function, i.e., the CuDAM loss. Finally, we
combine the prediction output of the network with CuDAM’s
attention map to obtain the final ensemble prediction.

C. Attention Module
The following describes the details of the attention module.

Given an intermediate feature map Fa 2 RC
0⇥H

0⇥W
0

as input,
CuDAM infers an attention map Matt 2 R1⇥H

0⇥W
0
. The

higher the value on the graph Matt, the less confident the
model is in predicting the pixel class. We first compress the
feature Fa using average-pooling and max-pooling operations
along the channel axis to generate an efficient feature descrip-
tion similar to the CBAM [37]. Then, we obtain an attention
map of the same size as the input feature Fa by concatenating
them and feeding the feature into a standard convolution
layer. To be specific, the softmax function is used to limit
the sum of the attention value to a fixed value, producing
our curiosity-driven attention map Matt. The arrangement of
using softmax instead of the sigmoid function is to make the
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Fig. 2. The overview framework of the proposed CuDAM approach. The dotted line indicates that the process will only be used during the training phase.
The attention module is used to generate a 2D attention map of the same size as the input feature to filter multi-scale information for network prediction. The
reward mechanism encourages the network to focus on unknown targets by rewarding the network with different values of GT information according to the
attention graph.

different pixel points compete for limited attention and thus
achieve an optimal fit. In short, the attention map is computed
as:

Matt(Fa) = �(f([Avgpool(Fa);Maxpool(Fa)])) (1)

where � denotes the softmax function and f represent a
standard convolution operation.

To obtain more detailed features for model inference in the
attention-high region, we fuse multi-scale feature maps F low

and Fmid, which are sequentially selected from two different
layers of the encoder. Concatenation and summation are two
common feature fusion methods, and our experimental result
shows that the concatenation is better than the summation
manner. We use a convolutional layer with a kernel size of
1⇥1 and an upsampling layer to convert the feature to be the
same size as Fa. The fusion multi-scale feature is computed
as:

F sc = ⌘(Concat(F low,Fmid,Fa)) (2)

where ⌘ denotes the feature processing operations using con-
volution and upsampling. The overall attention process can be
summarized as:

F = ↵Matt(Fa)⌦ (Fa + F sc) + Fa (3)

where ⌦ denotes element-wise multiplication and ↵ is set as a
learnable parameter that is gradually modified during training.

D. Reward Mechanism
Let X 2 R3⇥H⇥W denote the input image, where H and

W are the height and weight of the input image, respectively.

C denotes the number of pre-defined categories satisfying c 2
{1, . . . , C}. Prior to normalization, the segmentation model
generates a predicted probability pc,h,w for each class at each
location h,w. Then, the entire logit output can be denoted
as Pa 2 RC⇥H⇥W . The correct classification answer for the
input image is recorded in ground truth G 2 ZH⇥W , and gh,w

in G indicates the class number c corresponding to the position
h,w. The GT information only contains normal classes and not
OoD samples.

We generate an award map Gaward 2 ZC⇥H⇥W by
expanding the ground truth value gh,w at each location from a
one-dimensional class number to a three-dimensional vector,
which has a value of 1 for the correct category of positions
c, h, w and 0 for the rest. Such a one-hot encoding method is
adopted to convert the reward matrix to the same size as the
predicted output.

We first up-sampling the attention map to the same size as
the input image. This attention map is denoted as Mup

att 2
R1⇥H⇥W . Next, the reward feature is fed into the model to
help the network make predictions:

P = ⌧Mup
att(Fa)⌦Gaward + Pa (4)

where ⌧ is reward hyper-parameter that controls the proportion
of the reward. The intuition behind Eq. (4) is that high
attention value areas deserve more helpful information. A
higher attention value for each location h,w means that the
model can be rewarded more, increasing the probability of
prediction for the correct category by more. The GT reward
value increases the predicted probability value of the model
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Fig. 3. Results of the CuDAM approach on identifying anomaly road obstacles within autonomous driving. Given the input images shown in (a), CuDAM
can compute a curiosity-driven attention map by designing the reward mechanism and Latt as shown in (b). Next, the anomaly score is obtained based on the
probability output predicted by the model, which is shown in (c). Then, as shown in (d), CuDAM ensembles the attention map and SML prediction using a
weighted average to output the anomaly prediction. Finally, the segmentation results containing anomalous obstacles are obtained by integrating the anomaly
prediction results with the semantic segmentation results as shown in (e).

output in the correct category dimension, which then reduces
the loss function of the classification problem. In addition, to
prevent the addition of the reward mechanism from making
the model lazily over-reliant on rewards and leading to lower
performance in semantic segmentation, we randomly choose
whether to give a reward to the model in each iteration with a
certain probability. This forces the model to optimize in both
exam and study scenarios constantly. The model is not allowed
to receive a reward during the exam scenario. In contrast, the
reward mechanism is used to motivate the model to recognize
its shortcomings during the study scenario.

E. Training and Inference

The final logit output P can be obtained from the previous
reward method. Then, the max logit score S 2 RH⇥W and
prediction Y 2 RH⇥W are defined as:

Sh,w = max
c

Pc,h,w (5)

Yh,w = argmax
c

Pc,h,w (6)

As proposed in uncertainty estimation methods in [21]–[23],
different uncertainty estimation functions g(S) can be selected
to calculate the final anomaly score denoted as K 2 RH⇥W .

In our experiment, we find that the margin between the
attention values of the anomalous and normal targets is small
using only the reward mechanism. To increase the gap between
attention values, we added an attention loss function term
to the original segmentation loss. The attention map Mup

att

can be obtained from the previous reward method. Then,
the mean of all predicted correct position attention value  

is calculated. The correct position is the location that the
model can predict correctly itself without using the GT reward,
which is calculated from the Pa, the opposite is the incorrect
position. The intuition behind this is that the model should
have a lower attention value on the position that it can easily

predict correctly on its own. Next, the CuDAM attention loss
is calculated as follows:

Latt =

(P
h,w

mh,we
kh,w , mh,w < � ·  

0, mh,w � � ·  
(7)

where mh,w denotes the attention value corresponding to the
position h,w that is predicted incorrectly in Mup

att and � is
an adjustable penalty hyper-parameter, which balances the gap
between attention values of each position. The smaller � is, the
greater the difference between the attention value of abnormal
and normal pixels. Assuming that the loss function of the
original semantic segmentation network is Lseg, then the total
loss function is defined as:

Ltotal = Lseg + �Latt (8)

where � is the weight parameter of Latt. Since the segmenta-
tion ability of the network is poor at the beginning of the
training, we want the network to focus on improving the
semantic segmentation accuracy. As the number of training
sessions increases, we expect the network to focus on im-
proving the semantic segmentation accuracy. As the number
of training epochs increases, we expect the model to focus on
learning how to improve the accuracy of anomaly detection by
reasonably allocating attention. Therefore, the attention weight
should be gradually increased with the training accuracy.
Based on this idea, we design a self-regulation method of �.
We count the number of all correctly predicted pixels acorrect,
and the number of all pixels involved in the loss function
calculation atotal, � is calculated as :

� =
acorrect

atotal
(9)

Until now, a curiosity-driven attention map Matt and a
probability prediction output K can be obtained. The vi-
sualization results of the attention map are shown in Fig.
3(b). K can be calculated using various uncertainty estimation
functions and we choose SML [23] to generate anomaly scores
and display the visualization results in Fig. 3(c). Finally, we
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ensemble the max logit score and the attention map using a
weighted summation:

Pano = K + �Mup
att (10)

where � denotes anomaly score weighting hyper-parameter.
With this simple ensemble, CuDAM can be combined with any
anomaly detection method to achieve better performance, the
visualization results are presented in Fig. 3(d). By combining
the anomaly detection and semantic segmentation results, the
final segmentation prediction graph is shown in Fig. 3(e). In
addition, we have tried to combine our method with some other
uncertainty estimation methods and all have shown their ef-
fectiveness. Training a model to place attention on anomalous
obstacles produces an interesting optimization problem where
the network can gain rewards and reduce the overall loss if it
succeeds in placing attention on its uncertainty region. Further
details about training can be found in the following section:
Experiments.

IV. EXPERIMENTS

1) Implementation Details: We follow the experimental
setup of SML [23]. In particular, DeepLabv3+ [38] with
ResNet101 [39] backbone is selected as the segmentation
module. The output stride is set to 8. We insert our attention
module after the convolution layer following the concatenation
operation of the decoder. The entire segmentation network is
trained on the Cityscapes dataset [40], which is widely used
in autonomous driving scenarios. By quantitative experiment,
↵ in Eq. (3) initialized as 0 and the hyper-parameter ⌧ and �
in Eq. (4) and Eq. (7) are set to 50000 and 0.5. The anomaly
score weighting hyper-meter � is set to 20000.

2) Datasets: We evaluate the performance of our framework
CuDAM on the standard benchmarks of anomaly or uncer-
tainty estimation for urban driving: Fishyscapes (FS) Static,
FSLost & Found [14] and Road Anomaly [12]. For all datasets,
we provide evaluations on the public validation images. The
FS Static and FS Lost& Found dataset separately contains 30
images with the unexpected obstacles from PASCAL VOC
and 100 images regarding the obstacles in the original Lost &
Found dataset. The Road Anomaly dataset has 60 images of a
real scene from the Internet. Images in FS Static are obtained
through the fusion of object and scene, while in FS Lost &
Found, anomaly detection of small targets is more emphasized.
Compared to the FS dataset, the unexpected objects in the
Road Anomaly dataset contain a greater variety of species
and size, and are therefore more challenging.

3) Evaluation Metrics: For the quantitative measure of our
CuDAM approach’s performance, we compute the average
precision (AP), the false positive rate at 95% true positive rate
(FPR95), and the area under receiver operating characteristics
(AUROC) to validate our work. AP is an evaluation metric
for measuring the accuracy of rare occurrences detection,
which makes it suitable for anomaly detection. To highlight
safety-critical applications, we also compute the FPR95, which
describes the probability of an unexpected sample being
misclassified into a normal sample when the OoD sample is
correctly classified at 95%. Although some studies in [27],

[41] have shown that AUROC is not suitable for anomaly
detection because the anomaly data is similar to long-tailed
distribution with class imbalance, we still calculate this metric
as a reference.

4) Baseline: We compare our approach against the repre-
sentative uncertainty estimation methods in the FS benchmark
which do not require external dataset and training or designing
additional network modules. We also compare our framework
with approaches that add a new task but do not significantly
increase the difficulty of training.

A. Evaluation Results

We evaluate our CuDAM technique by applying it to several
different unexpected detection methods which do not require
retraining or additional OoD data: MSP [21], Max logits [22]
and SML [23]. CuDAM achieves a significant performance
gain over using the SML. Tab. I shows comparisons between
our proposed CuDAM approach and the baseline for the FS
validation datasets and Road Anomaly. All data are publicly
available instead of our own training results. For a fair compar-
ison, we list the three criteria of the works: extra component,
extra network, and utilizing OoD data. The extra component
means that the method requires a modification to the original
semantic segmentation model structure, which may lead to
a worse semantic segmentation result. The extra network
refers to the fact that the method requires the training of
additional models (i.e., image synthesis, generative adversarial
networks), which increases the inference time as well as the
computational effort. Meanwhile, the use of additional datasets
is not encouraged as it is difficult to collect enough data to
cover all possible classes of anomalies in real scenarios for
training purposes.

As shown in Tab. I, our method outperforms most other
previous methods in FS Static and Road Anomaly datasets
with a large margin. We still report methods that require ad-
ditional networks or data. Methods that require reconstruction
mostly require several times more computational cost and
using additional OoD data is unrealistic. Our work aims to
propose a component that can be plug-and-play on the original
semantic segmentation network conversely. We notice that
CuDAM could not obtain obvious promotion on the FS Lost
& Found dataset compared to the other two datasets. Since
obstacles in the FS Lost & Found dataset are usually placed far
away, they became very small in the image after visualizing
the failure cases. However, our approach tends to give high
attention values to distant objects, which leads to interference
with the result. This can be improved by adjusting the attention
weights to different datasets, but this is not the emphasis of
our study.

We then evaluate CuDAM on commonly used probability
scores with the FS Lost & Found validation set. For requiring
an external retraining methods, retraining may decrease the
performance of the semantic segmentation. Therefore, we also
report the mean intersection over union (mIoU). As can be
seen from Tab. II, CuDAM performs particularly well without
greatly increasing the computation and training complexity.
This demonstrates the practicality of CuDAM since it both
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TABLE I
RESULT COMPARISON ON THE FISHYSCAPES AND ROAD ANOMALY DATASETS

Methods
Additional Train Utilizing

OoD Data

FS Static FS Lost & Found Road Anomaly

Extra Component Extra Network AP " FPR95# AUROC" AP " FPR95# AUROC" AP " FPR95# AUROC"

MSP [21] 8 8 8 14.24 34.10 88.94 6.02 45.62 86.99 20.59 68.44 73.76
Max logits [22] 8 8 8 27.99 28.50 92.80 18.77 38.13 92.00 24.44 64.85 77.97

SML [23] 8 8 8 48.67 16.75 96.69 36.55 14.53 96.88 25.82 49.74 81.96
Entropy [30] 8 8 8 21.78 33.74 89.99 13.91 44.85 88.32 22.38 68.15 75.12

kNN Embedding-Density [14] 8 8 8 4.10 22.30 - - - - - - -
Mahalanobis [42] 8 8 8 27.37 11.7 96.76 56.57 11.24 96.75 14.37 81.09 62.85

Energy [43] 4 8 8 31.66 37.32 91.28 25.79 32.26 93.50 24.44 63.36 78.13
Ours 4 8 8 66.26 5.93 98.61 36.20 29.50 95.02 30.28 48.71 84.29

Synboost [27] 8 4 4 48.44 47.71 92.03 40.99 34.47 94.89 41.83 59.72 85.25
SynthCP [15] 8 4 4 23.22 34.02 89.90 6.54 45.95 88.34 24.86 64.69 76.08

Deep Gambler [44] 8 8 4 67.69 15.39 97.51 39.77 12.41 97.19 31.45 48.79 85.45
Meta-OoD [27] 4 4 8 72.91 13.57 97.56 56.57 11.24 96.75 - -

Road inpainting [35] 4 4 8 - - - 81.00 9.10 - 52.60 47.10 -
PEBAL [36] 4 8 4 82.73 6.81 99.23 59.83 6.49 99.09 62.37 28.29 92.51

TABLE II
RESULTS WITH DIFFERENT UNCERTAINTY SCORES

Methods mIoU
FS Static

AP " FPR95# AUROC"

MSP [21] 77.90 23.23 26.23 85.45
Max logits [22] 77.90 45.80 19.34 92.28

MSL [23] 77.90 52.30 11.25 96.59

CuDAM+MSP 78.29 36.67 19.16 91.25
CuDAM + Max logits 78.29 52.46 15.18 96.30

CuDAM+MSL 78.29 66.26 5.93 98.61

shows a positive impact on the semantic segmentation task
and the anomaly detection task. Moreover, the models with
CuDAM improve semantic segmentation by a small margin
different from other approaches via introducing additional
training tasks. Results demonstrate the general applicability
of CuDAM across different uncertainty estimation methods.
Researchers can seamlessly integrate CuDAM with anomaly
detection approaches in any semantic segmentation network
and jointly train the combined CuDAM-enhanced anomaly
detection networks.

B. Ablation Study

We attempt to get a clearer understanding of how certain
components of CuDAM contribute to the overall performance
in this section. Tab. III describes the effect of each proposed
method in CuDAM: attention module, reward mechanism, and
Latt. In particular, since the calculations in the reward mech-
anism and Latt are based on attention module, so their effects
on the overall performance cannot be discussed separately
from the attention module.

We first find that using only the attention module, which
computes an attention map of the same size as the input feature
without applying any reward or loss function to constrain the
generation of attention, can positively affect the performance.
This result may be explained by the fact that the attention
mechanism adopts the softmax function to control all values
on the attention graph to sum to 1, which leads to competition
among pixels to obtain a more accurate prediction of semantic
segmentation, thus increasing the attention value of uncertain

TABLE III
RESULTS OF ABLATION STUDY

Components of CuDAM
mIoU

FS Static

Attention Reward Latt AP " FPR95# AUROC"

8 8 8 77.90 52.30 11.25 96.59
4 8 8 +0.24 +2.33 -1.00 +1.05
4 4 8 +0.52 +12.68 -3.97 +1.86
4 8 4 +0.06 +3.93 -1.09 +0.54
4 4 4 +0.39 +13.96 -5.52 +2.02

positions. For the three parts of CuDAM, the reward mech-
anism improves the overall performance most signification,
showing a 10% increase in AP and a 3% decrease in FPR95.
We also find that the model trained with Latt produces better
accuracy in anomaly road obstacle detection while resulting
in an unwanted decrease in mIoU. The decrease is common
in multi-task learning with multiple loss function training and
can be improved by adjusting the weighting parameter of the
loss function.

Focus on a more intuitive perception of the role of each
component, we also try to visualize the attention maps gener-
ated by models using different components. The visualization
results are presented in Fig. 4. When the attention module
is used alone, although it can achieve a certain effect of
identifying unknown obstacles, the model tends to arrange the
attention value as a small average value. The addition of the
reward mechanism is similar to the addition of a regularization
term which further enlarges the distance between the attention
values of pixels with high uncertainty and low uncertainty.
Compared with the attention-only model, the detection rate of
unknown obstacles is significantly improved. It can be noticed
that the addition of Latt makes the model hardly pay attention
to its very definite region, and the effect of attention becomes
more apparent. We observe that in some cases, the attention
loss function will undesirably over-focus attention on small
distance targets and ignore the nearby abnormal obstacles.
We ultimately chose to retain the loss function because it
helps to filter out most of the defined areas more easily by
setting thresholds, which is worked for practical applications.
Therefore, it can be demonstrated that our method significantly
reduces the number of false pixels.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2022.3204714

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 07,2022 at 11:15:41 UTC from IEEE Xplore.  Restrictions apply. 



8

Fig. 4. The visualization results of attention maps generated by models using different components for ablation study. Each row corresponds to different
input images, and the attention maps are shown as the three components (i.e., attention module, reward mechanism and Latt) are added to the model in turn.
We show the output of attention maps directly without any threshold filtering that could embellish experiment results.

TABLE IV
COMPARISON ON COMPUTATIONAL COST

Models GFLOPs Infer. Time(ms) Param.(M)

ResNet-101 [39] 2139.68 60.54 64.24
ResNet-101+SML [23] 2139.68 61.41 64.24

Ours 2140.19 67.23 64.58

SynthCP [15] 4551.11 146.90 -
Synboost [27] - 1055.5 -

C. Comparison on computational cost

We report the computational overhead of the proposed Cu-
DAM method in Tab. IV. CuDAM has a minimal computation
cost of 0.51 GFLOPs and 5.82ms inference time, together
with a 0.34M increase of parameter number. The model is
implemented using PyTorch. Our metrics are measured with
the image size of 2048 × 1024 and averaged over 100 runs on
NVIDIA RTX3090. This result demonstrates that our method
is lightweight and general, which can be integrated into most
semantic segmentation modules. In particular, we also select
SynthCP [15] and Synboost [27] as representative methods
from the image re-synthesis methods and report their compu-
tational cost. The results show that our method significantly
reduces computational loss compared to the synthetic method.

D. Arrangement of the Attention Module

After being given an attention module, inserting it into
the different locations of the semantic segmentation network
may affect the overall performance. In this experiment, we
compare two different positions of arranging the attention
module, i.e., the surface position near the predictive output
layer and the deep position near the encoder. Empirically, the
closer the attention is to the output, the greater the impact on

TABLE V
COMPARISON OF DIFFERENT ATTENTION MODULE POSITION

Attention Position mIoU
FS Static

AP " FPR95#AUROC"

The surface position 78.43 63.17 6.93 97.71
The deep position 78.29 66.26 5.93 98.61

the output results, which results in a more accurate attention
map. On the other hand, the closer the attention is placed to
the deeper position of the model for high-dimensional features,
the more information is obtained and the greater the impact on
the segmentation results. Tab. V shows a comparison of the
experimental results for the two locations. From the result,
we can find that placing the attention module in the deeper
position infers a finer attention map than placing it near the
output, i.e., in the training phase: insert location feature size
is (304, 180, 180) and output feature size is (19, 720, 720).
We consider that such experimental results may arise because
the purpose of our curiosity attention is to focus on picture
content rather than location. In layers close to the output, the
attention weights extracted by the attention model are under-
generalized, yet attention is sensitive, which tends to nega-
tively affect the results. Conversely, when attention is placed
in deeper layers, the accurate attention map causes the features
in the uncertain regions of the model to be enhanced, and
this enhancement is adequately fitted by the decoder, which
can play the role of the attention module in enhancing local
feature recognition. Meanwhile, this distinguishes CuDAM
from uncertainty prediction tasks.
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Fig. 5. The visualization results of anomaly prediction outputs with different
reward probabilities. The 50% reward probability produces the lowest false
positive rate of abnormal prediction output.

E. Setting of the Reward Mechanism

Different rewards system settings will have different effects
on anomaly detection results. The excessive reward can cause
the model to learn how to model the decision lazily, which can
affect the segmentation effect. While too limited rewards may
lead to poor performance of anomaly detection. Therefore, in
this section, we analyze the effect of different reward settings
on the effectiveness of unknown anomaly detection. The
reward mechanism we set is mainly reflected in two points:
one is the reward probability, i.e., how much probability the
model will be given a reward in the iteration; the other is the
reward weight, i.e., how much correct information the model
can get from the GT label.

We first search for an effective approach to set the possi-
bility of giving a reward. We visualize the anomaly scores
output by the model at different reward ratios, and Fig. 5
shows the visualization results. We observe that the model
can already obtain better anomaly segmentation performance
when the probability is set to 30%. However, increasing the
reward proportion causes an increase in the uncertainty score
at the edges of objects, which can interfere with the anomaly
detection as in Fig. 5(b). When increasing the reward ratio
to 50%, as shown in Fig. 5(c), the prediction output has
the lowest false positive rate, and the model performs best
in abnormal segmentation. Then continuing to increase the
probability of giving a reward can cause the model to refuse
to learn the decision boundary and lead to a problem similar
to pattern collapse.

We also investigated the effect of the attention weights on
the effect of the model. To intuitively display the segmentation
performance and the magnitude of the effect on AP under
different weights, we present the experimental results in the
form of a statistical graph in Fig. 6. This result is significant

Fig. 6. Comparison of different reward weight parameters. We reflect both
the AP change curve and the AP value in the same graph. The green
bar represents the AP increasing from left to right, and the critical point
corresponds to the initial value without the bonus mechanism. The pink and
blue bar areas represent the magnitude of the change in AP value, with pink
and blue corresponding to an increase in AP value and an undesired decrease,
respectively.

at the reward weight ⌧ = 50000. Increasing the weight value
further results in a very significant decrease in AP. Therefore,
it can be assumed that our reward mechanism is effective
in some cases, since focusing precisely on uncertain objects
can maximize the reward obtained by the model. From the
perspective of training, this can maximize the reduction of
loss function for each forward propagation. However, too
much weight means that the model is subjected to a strong
regularization constraint, which can affect both the semantic
segmentation and the anomaly detection undesirably. This
produces an interesting optimization problem, where the model
interacts between getting more rewards and getting more
accurate semantic segmentation results. This case would drive
the model to get more secure and reliable segmentation results.

V. CONCLUSION

In this paper, a CuDAM method has been proposed for
pixel-wise unexpected road obstacle detection in complex
driving scenes. We design an attention model stimulated by a
reward mechanism and then design a loss function to further
allocate attention weight. The attention graph generated by
the above method is utilized to help the network determine
anomalous obstacles. The final network learns where the
model is unknown to emphasize and refines intermediate layer
features effectively. Various experiments are conducted to
validate the effectiveness of the method. Finally, we visualize
how the network exactly infers under different reward settings.
Although improving semantic segmentation performance is
not the emphasis of this paper, it is interesting to note that
experiments demonstrate such simple attention has a positive
impact on semantic segmentation. In the future, we will
directivity investigate the application of such a curiosity-driven
attention to various additional tasks which is natural for the
artificial neural network.
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